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Abstract. We investigate confinement from new global defect structures in three spatial dimensions. The
global defects arise in models described by a single real scalar field, governed by special scalar potentials.
They appear as electrically, magnetically or dyonically charged structures. We show that they induce
confinement, when they are solutions of effective QCD-like field theories in which the vacua are regarded
as color dielectric media with an antiscreening property. As expected, in three spatial dimensions the
monopole-like global defects generate the Coulomb potential as part of several confining potentials.
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1 Introduction

We can describe the physics of heavy quarks by using mod-
els that engender non-relativistic confining potentials. One
can successfully obtain the whole mass spectrum of the
quark–antiquark pair in the quarkonium system using, for
instance, the well-known Cornell potential [1] UC(r) =
− a

r +br, where a, b are non-negative constants and r is the
distance between quarks.Although there aremanydifferent
forms of such confining potentials the most probable po-
tential to describe heavy quarks in the bottomonia region,
as has been shown in [2, 3], is UMZ(r) = C1

(√
r − C2

r

)
,

where the constants are fixed as C1 � 0.71 GeV1/2 and
C2 � 0.46 GeV3/2 – see [4] for further details.

As one knows the color vacuum in QCD has an analog
in QED. In QED the screening effect creates an effective
electric charge that increases when the distance r between a
pair of electron–antielectron decreases. On the other hand,
in QCD there exists an antiscreening effect that creates an
effective color charge which decreases when the distance r
between a pair of quark–antiquark decreases. We can sum-
marize this discussion by writing E(r) ∼ q′(r)

r2 ∼ q
G(r)r2 ,

whereE(r) stands for the electric (or color electric) field due
to a charge q embedded in a polarizable medium character-
ized by a “(color) dielectric function”G(r), and r represents
an arbitrary position on the (color) dielectric medium. The
QED vacuum behavior is manifest according to the effec-
tive electric charge q′(r � d) ≤ 1 or G(r � d) ≥ 1 and
q′(r � d) > 1 or G(r � d) < 1, where d is the typical
size of the polarized “molecules”. On the other hand, the
QCD vacuum behavior is manifest according to the effec-
tive color electric charge q′(r � R) � 1 or G(r � R) � 1
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and q′(r < R) → 1 or G(r < R) → 1, where R is the
typical radius of a particular hadron made of quarks. Since
we are interested in confinement we shall focus our at-
tention on the latter case, where the behavior of G(r) is
clearly chosen such that the QCD vacuum provides abso-
lute color confinement. Note that formally we can continue
using Abelian gauge fields just as in QED, but now G(r) is
chosen properly in order to provide confinement. In fact, as
we shall see below, even though we consider non-Abelian
gauge fields there are some reasons to consider only the
Abelian projections when these fields are embedded in a
color dielectric medium [5]. We account for these facts to
study confinement of quarks and gluons inside hadrons by
using an effective phenomenological QCD-like field the-
ory [1, 6–8].

As an example consider G(r) = a
a+br2 . Notice that

G(r → ∞) → 0 and G(r → 0) → 1 as expected to provide
perfect confinement. Using this function G(r) and the fact
that E(r) ∼ q

G(r)r2 , it is not difficult to conclude that the
potential U(r) has the form of the Cornell potential. As
we have stated above, there are many different forms of
confining potential and then many different color dielectric
functions G(r) can be used to describe confinement. How-
ever, for simplicity we choose G(r) as simple as possible.
By considering specific color dielectric functions, we shall
investigate later models developing several possibilities of
confining potentials.

In general, the behavior of the color dielectric function
G with respect to r can be driven by some scalar field
φ(r) that describes the dynamics of the color dielectric
medium. Applying the Lagrangian formalism to describe
both the dynamics of gauge and scalar fields embedded in
a color dielectric medium we have the effective lagrangian
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Leff = − 1
4 G(φ)FµνF

µν + 1
2 ∂µφ∂

µφ− jµA
µ, where µ, ν =

0, 1, 2, . . . , D and jµ is an external color current density.
Considering static gauge fields, i.e., Aµ = [U(r), 0, . . . , 0],
E(r) = F0r, D = 3 and j0 = ρ(r) = 4πqδ(r), the equation
of motion for the gauge field gives E = q

G(φ)r2 where the
function G(φ) defines the confinement. The color electric
charge can be given for the fermionic sector as jµ = qψ̄γµψ
of a QCD-like theory that we consider in the next section
with further details. Let us now make some comment about
the scalar field sector and also consider other assumptions.
Theories involving gauge and scalar fields like the effective
lagrangian Leff above have been well explored in the liter-
ature [4, 9–11]. Specially in [9] a model involving Abelian
projections of a non-Abelian gauge field coupled to a dy-
namical scalar field as in the effective Lagrangian above
was considered. The scalar field φ was identified with a
dilaton field whose solution of equation of motion behaves
like φ(r) ∼ ln

(
1 + a

r

)
. The scalar potential V (φ) is set to

zero. It was shown in this model that the Coulomb poten-
tial is regularized at a short distance. Other investigations
as given in [4, 10, 11] usually consider a non-zero scalar
potential like V (φ) ∼ αφ β which has a unique minimum.
We consider below a different perspective of investigation.

Let us consider the possibility of the formation of de-
fects in the color dielectric medium. In order to implement
this phenomenon the potential V (φ) should have a set of
minima whose topology is non-trivial. These defects can
be understood as non-linear excitations of the color di-
electric medium. Since they become charged via fermion
zero modes – see the details in Sect. 2 – they carry “color”
charges localized along their spatial extensions. We investi-
gate the confinement of these defects since they are charged
objects embedded in a color dielectric medium.

In classical electrodynamics, as one knows, there are ex-
tended charged objects that play the role of confinement.
As an example, consider the infinite plane of charges that
produces the “confining potential” U(r) ∼ σr. Notice that
this object interacts with charged particles – or with an-
other parallel infinite plane – in such a way that we cannot
separate them from each other since the energy of the sys-
tem increases with the separation r. However, other objects
with a finite size as a charged sphere of radius R produces
an electrical field (for r > R) just as the electrical field of
a point particle, i.e., E ∼ Q

r2 , where Q is the total charge
of the sphere. Of course, in this case there is no confining
behavior since the energy decreases with the separation
r > R. On the other hand, as we have stressed above,
when such charges are embedded in a dielectric medium
with the antiscreening property, i.e., in the QCD vacuum,
the confinement appears.

Consider a system with gauge fields embedded in a
medium that develops both the dielectric and magnetic
property given by the Lagrangian L = − 1

4G(φ)FµνF
µν +

jµA
µ − 1

4H(φ)F̃µνF̃
µν + jmµÃ

µ + 1
2 ∂µφ∂

µφ, where jµ and
jmµ are the current densities of the electric and magnetic
charges either associated to point-like sources or extended
charged defects. Assuming that the dual gauge field with
strength tensor F̃µν describes magnetic monopoles on the
QCD vacuum, we expect that the “magnetic permeabil-

ity”H(φ) gets stronger as the dielectric functionG(φ) gets
weaker and vice versa – recall that magnetic and electric
charges, h and q, are related as h ∼ 1/q. Let us now imple-
ment the idea proposed by ’t Hooft and Mandelstam [12] –
see also Seiberg–Witten theory [13] – concerning confine-
ment of quarks. It considers magnetic monopoles in the
QCD vacuum generating screening currents that confine
the color electric flux in a narrow tube. This is dual to
the Abrikosov flux tube produced in a superconductor –
see, e.g., [14] for further discussions. In order to produce
confinement, both G(φ) and H(φ) should have the suit-
able behavior G(r � R) → 0 (H(r � R) → 1), for the
confined phase; and G(r � R) → 1 (H(r � R) → 0), for
the deconfined phase. R is the radius of the hadron in the
deconfined phase and φ is uniform in both regimes, i.e.,
∂rφ(r) ∼ 0. In the confined phase a hadron (such as a
quark–antiquark pair or a defect–antidefect pair) looks like
a narrow flux tube (connecting the two sources) embedded
in a monopole condensate. This phenomenon is governed by
the dual effective Lagrangian L̃eff = − 1

4 F̃µνF̃
µν + jmµÃ

µ,
whose equations of motion are
(i) ∇.B̃ = ρm and
(ii) −∇ × Ẽ = jm, where Ẽ and B̃ are static fields and
jµ = 0. The homogeneous equation ∇.Ẽ = 0 describes the
uniform electric field in the confined phase. The persistent
currents in the monopole condensate are governed by the
dual London equation λ2∇× jm = Ẽ, where λ is the Lon-
don penetration depth [14]. Combining this equation with
(ii) for the electric field Ẽ we find the fluxoid quantization
relation

∫
Ẽ.dS − λ2

∮
jm.d� = nΦe [14], where n is an

integer and Φe = q is the quantum of electric flux.
On the other hand, in the deconfined phase themagnetic

monopoles are dilute and the magnetic current is negligi-
ble, i.e., jmµ ∼ 0. In this regime the theory is described by
the effective Lagrangian Leff = − 1

4FµνF
µν + jµA

µ, whose
equations of motion are
(iii) ∇.E = ρ and
(iv) ∇ × B = j, where E and B are static fields and the
electric current j vanishes. Equation (iii) should describe
the Coulomb potential in the deconfined phase. The above
equations of motion comprise part of the full set of equa-
tions of motion we obtain from the original Lagrangian for
the scalar, electric and magnetic fields – fermion fields will
also be included later. In the deconfined phase, since there
are some magnetic monopoles, they are around the surface
of the hadron. The magnetic field due to such magnetic
monopoles can be found by using the “Gauss law” (i) in
D spatial dimensions given as
(v) 1

rD−1
d
dr

(
rD−1H(φ(r))B̃(r)

)
= ρm. Here we assume

that the magnetic charge density ρm has radial symmetry.
We also consider a regime r ∼ R in which the scalar field
φ is dynamical. In such a regime, taking into account the
discussions above, and eliminating B̃ through the equa-
tion of motion (v) from the original Lagrangian gives1

1 A similar procedure to construct an effective Lagrangian by
substituting solutions of equation of motion into the original
Lagrangian has been considered, e.g., in [34].
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Leff = − 1
4G(φ)FµνF

µν+jµAµ+ 1
2 ∂µφ∂

µφ−V (r, φ), where
V (r, φ) ≡ V (φ)/r2D−2 = Q2

m/2 r
2D−2H(φ), andQm is the

total magnetic charge of dilute magnetic monopoles dis-
tributed on the surface of the hadron with radius r ∼ R
in the deconfined phase. Notice that although the origi-
nal Lagrangian L is Lorentz invariant, in the deconfined
phase the scalar sector of the effective Lagrangian, i.e.,
Lφ

eff = 1
2 ∂µφ∂

µφ − V (r, φ), which supports defects with
only radial symmetry, effectively breaks Lorentz invariance.
Once created, these defects get charged electrically through
fermion zero modes ψ0 and then turn out to interact with
the gauge field sector Leff = − 1

4G(φ)FµνF
µν + jµA

µ.
This Lagrangian is Lorentz invariant and is responsible
for the confinement of the global defects carrying the elec-
trical current density jµ. The effective Lagrangian Lφ

eff
is the key point of investigation of global defects. These
global defect structures firstly found in [15] add to a list
of other extended objects presenting similar confinement
profile as for instance Dp-branes in string/M-theory [16],
monopoles [13, 17] and parallel domain walls [18] in stan-
dard field theory. And according to the Olive–Montonen
conjecture [19], one may find models in which extended ob-
jects may present a dual role, changing their contents with
ordinary particles in the dual model: the weak coupling
phase gives rise to defect solutions, and duality connects
this phase with the strong coupling phase, which exposes
confinement of particles. An example of this is the confine-
ment of electric charge, which is connected to condensation
of magnetic monopoles [13]. The global defect structures
that we use [15] are stable structures extended along the
radial dimension, and they appear in models described by
a single real scalar field. These defects do not require the
introduction of gauge fields, as it happens, for instance,
to monopoles and cosmic strings. And also, they do not
violate the Derrick–Hobard theorem [20,21] (see also [22]),
because of the potential that we consider in [15]. Indeed,
such defects require less degrees of freedom of the effective
theory than the global monopole and the global cosmic
string. Thus, these objects can appear in a confined phase
even though many relevant degrees of freedom of the the-
ory are frozen or simply dropped out due to a sequence
of spontaneous symmetry breaking. We organize our work
as follows. In the next Sect. 2 we present the basic ideas,
and we study explicitly the confining behavior in D = 3
dimensions. Also, in Sect. 3 we work in D = 3 dimensions,
and we calculate the electric and magnetic energies of the
defects, and we show that for a suitable choice of param-
eters, the model may also support dyonic-like structures.
In Sect. 4 we present our comments and conclusions.

2 Confinement from global defects
in D dimensions

We consider a QCD-like effective Lagrangian which can
be written in terms of Abelian gauge fields provided we
consider the theory in a color dielectric medium, charac-
terized by a color dielectric function G(φ) with suitable
asymptotic behavior.

In a medium which accounts mainly for one-gluon ex-
change, the gluon field equations linearize and are formally
identical to the Maxwell equations [5,23]. Through the color
dielectric function G(φ) the dynamics of φ is coupled to
an averaged gauge field Aa

µ which has only low-momentum
components [24]. In addition, it is believed that in the in-
frared limit there is an Abelian dominance [25]. In such
a limit one can fix the non-Abelian degrees of freedom in
non-Abelian SU(N) theories in the maximal Abelian gauge,
leaving a residual U(1)N−1 gauge freedom [26,27]. Results
in QCD lattice have shown that the Abelian part of the
string tension accounts for 92% of the confinement part
of the static lattice potential [28, 29]. Thus, it suffices to
consider only the Abelian part of the non-Abelian strength
field, i.e.,F a

µν = ∂µA
a
ν −∂νA

a
µ. Furthermore, without loss of

generality we can suppress the color index “a” if we take an
Abelian external color current density jµ

a [4, 9, 10, 30, 31].
We take account of these facts and we write down the
following low energy effective Abelian Lagrangian:

L = − 1
4
G(φ)FµνF

µν − jµA
µ +

1
2
∂µφ∂

µφ− V (φ)

+ψ̄(iγµ∂µ −m− f(φ))ψ. (1)

Notice that the spinor fieldψ is coupled to the scalar field via
the standard Yukawa coupling term ψ̄f(φ)ψ. The first term
in (1) can also be regarded as a by-product of Kaluza–Klein
compactifications of supergravity theories, where G(φ) in
general is a function of both dilaton and moduli fields [32].

We now look for background solutions in the bosonic
sector of (1). The equations of motion for static fields,
jµ = (ρ, 0, . . . , 0) and Aµ = (A0, . . . , 0) in arbitrary D
dimensions, are given by

∇2φ = Vφ − 1
2

|−→∇U |2Gφ, (2)

−→∇ .[G(φ(r))
−→∇U ] = −ρ(r), (3)

where U = A0 and the subscript φ on any function means
derivative with respect to φ. It suffices for now to turn on
the electric field alone. As we shall see below, the magnetic
behavior can be found easily by using the results of the
electric case.

We now suppose that the fields engender radial sym-
metry, i.e., ρ = ρ(r), φ = φ(r) and U = U(r) with
r =

√
x2

1 + . . .+ x2
D. In this case (2) and (3) read

1
rD−1

d
dr

(
rD−1 dφ

dr

)
= Vφ − 1

2

(
dU
dr

)2

Gφ, (4)

1
rD−1

d
dr

(
rD−1G(φ(r))

dU
dr

)
= −ρ(r). (5)

In order to find classical solutions of the equations of motion
we take advantage of the first-order differential equations
that appear in a way similar to Bogomol’nyi’s approach,
although we are not dealing with supersymmetry in this
paper. That is, we follow [18] and we consider the poten-
tial V :

V (φ, r) =
1

r2D−2

{
1
2
W 2

φ − Q2
e

2G

}
, (6)
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where we have defined the electrical charge of a defect with
a typical radius R as Qe = − ∫ R

0 ρ(r)rD−1dr. Potentials
breaking Lorentz invariance as above have been introduced
in the literature, e.g., in the context of supergravity [32],
dynamics of embedded kinks [33] and a scalar field in back-
grounds provided by scalar fields [34].

With this choice, the equations of motion can be solved
by the following first-order differential equations

rD−1 dφ
dr

= ±Wφ, (7)

rD−1G
dU
dr

= Qe. (8)

We notice that the scalar field φ(r) is now decoupled from
the gauge field U(r). According to (7) and (8) we see that
the dynamics of the gauge field does not affect the dynam-
ics of the scalar field. On the other hand, the scalar field
develops a background field that affects the gauge field
dynamics through (8) – recall G ≡ G(φ). The same hap-
pens to the fermion field ψ for which φ develops a bosonic
background field via (10) below. Thus the stability of the
new global defects investigated in [15] remains valid here.
The topological charge for such defects is given by

QD
T =

∫
drρ2

D = (−1)D(D − 1)!ΩD∆ W, (9)

where ΩD is the D-dependent angular factor and ∆W =
±W [φ(r → ∞)] ∓W [φ(r = 0)] as has been shown in [15].

The functions W , ρ and G are to be chosen properly
in order to describe confinement of defects.

The color charge density ρ is determined by the fact
that defects get charged by fermions. In order to make
this clear let us analyze the localization of fermion zero
modes on the defects [35]. The variation of δL/δψ̄ = 0
gives the equation of motion for the Dirac fermion. The
fermion equation of motion in D-dimensional spacetime in
spherical coordinates is

iγ0∂0ψ + iγr∂rψ + qγ0A0(r)ψ

−[m+f(φ(r))]ψ = 0, (10)

where ψ depends only on t and the radial coordinate r.
Also, γr is in general a linear combination of the stan-
dard Minkowski gamma matrices γµ. However, we can re-
gard γr here as a Minkowski gamma matrix itself, pro-
vided we transform ψ under a local rotating frame [36].
We have chosen the Yukawa coupling as f(φ(r)) = −m+
W̃φφ(φ(r)), where φ(r) is the bosonic background solution
of the scalar field. Moreover, we follow [15] and we choose
W̃φφ = r1−DWφφ.

We look for solutions of (10) by assuming a priori that
the fermion field is localized on the defect and lives in a
region of thickness 2R. As long as R goes to zero, the color
charge density tends to a delta function; the color electric
potential A0(r) becomes very strong with the behavior of
a Coulomb potential and turns out to be approximately
constant, i.e., ∂rA0 ≈ 0. Alternatively, we could gauge

away the field Aµ in (10) using the “pure gauge” choice
Aµ = ∂µΛ and ψ(xµ) = exp [−iqΛ(xµ)]h(xµ). We account
for this fact considering the ansatz

ψ = eiqA0(r)th(r)ε±, (11)

where ε± is a constant spinor and A0(r) is an approx-
imately constant color electric potential in a region of
radius R. We substitute (11) into (10) and use the fact
that γrε± = ±iε± to find the zero mode solution h0(r) =
C exp

[
∓ ∫ r

r′(1−D)
Wφφ(r′)dr′

]
, where C is a normaliza-

tion constant. We now use (11) to write the spinor solution,
and so we get

ψ0(r, t) = eiqA0(r)t
[
Ce∓ ∫ r r′(1−D)Wφφ(r′)dr′]

ε±. (12)

Using these general solutions, the localized charge on the
global defects due to the fermionic carriers is given by the
current density jµ = qψ̄0γµψ0. The color charge density is
ρ = j0 = qψ†

0ψ0 and so, using the general fermion solution
(12), we get

ρ(r) = qC0e
∓2

∫ r r′(1−D)Wφφ(r′)dr′
, (13)

where C0 is a normalization constant.
The color dielectric function G is chosen to have an

antiscreening property that acts against the separation of
defects. Such a behavior can be summarized as follows:

G(φ(r)) → 1, r ≤ 1, G(φ(r)) → 0, r � 1, (14)

as we have anticipated in the introduction.
As it was already shown in [15], for D ≥ 2 the global

defect solutions are obtained after mapping the D-dimen-
sional problem into an one-dimensional model. Such a map-
ping is obtained by identifying the left-hand side of (7) with
an ordinary derivative:

rD−1 dφ(r)
dr

=
dφ(x)

dx
, (15)

where x is a non-compact coordinate. It is not hard to
see that this implies a map between r and x of the form
dx = ±r1−Ddr. In the case of D = 2 one has x = ln r, in a
way such that one maps r ∈ [0,∞) to x ∈ (−∞,∞). This
is an example in which the whole coordinate r is mapped
to the whole coordinate x. However, this is not the case for
D ≥ 3, since the map is now x = ±[1/(2 −D)](1/rD−2).
This maps r ∈ [0,∞) to either x ∈ (−∞, 0] (upper sign)
or to x ∈ [0,∞) (lower sign), i.e., the coordinate x is now
“folded” into a half-line R/Z2. As we shall see below, this
imposes new conditions on the way one chooses the function
W . In the two-dimensional case we have chosen W such
that we have found a defect solution on the coordinate x
connecting vacua at (−∞,∞). For D ≥ 3, since we have
a boundary at x = 0 the defect should connect vacua at
(−∞, 0] or [0,∞). In order to fulfill this requirement the
function W should have a critical point at zero. Thus, we
follow [15] and we introduce another W , in the form

Wφ =
(
φ

p−1
p − φ

p+1
p

)
. (16)
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Here p is integer, p = 1, 2, . . . For p > 1 one getsWφ(0) = 0,
which shows that φ = 0 is a critical point ofW . Extensions
for two scalar fields with p = 1 are investigated in [37–39].
Substituting this W into (7) (considering the lower sign)
one finds the following defect solution:

φ(r) = tanhp

[
1
p

(
r2−D

D − 2

)]
. (17)

For D ≥ 3 and p = 4, 6, . . . this solution connects the
vacuum φ = 1 to the vacuum φ = 0 as r goes from 0 to ∞.

2.1 Confinement in D = 3 spatial dimensions

We now turn attention to specific models, where we power
the scalar matter contents to give rise to confinement in our
four-dimensional universe, which means that we consider
onlyD = 3 spatial dimensions. The solution (17) turns out
to be

φ(r) = tanhp (1/p r). (18)

Let us discuss the color charge density associated to this
defect. We substitute (18) into (13), and we perform the
integral on the exponential analytically, for the upper sign,
to get

ρ(r) = q c(p)[tanh (1/pr)]2p−2sech4(1/pr), (19)

where c(p) is a normalization constant which increases
monotonically with p = 4, 6, . . . The behavior of this color
charge density for p = 4 is depicted in Fig. 1. Notice that
ρ(r) falls off to zero as r goes to infinity. The leading term
of ρ(r) given in (19) for very large r (or very large p) is
(1/r p)2p−2 or 1/(4r)6 for p = 4. This ensures that the
fermion solution (12), with the minus sign in the expo-
nential, is normalizable and localized on the defect (18).
Thus, there is a localized charge distribution on the defect.

r

1

�(r)

Fig. 1. The radial defect φ(r) and the color charge density ρ(r)
(the dot-dashed line) for D = 3 and p = 4. The leading term
of ρ(r) in the asymptotic limit is ∼ 1/r6. The color charge is
localized around the radius R of the defect which approaches
its core for p very large

This charge density in D = 3 in the limit of p very large
is given by

ρ(r) = q c(p)
(

1
r p

)2p−2

, (20)

which turns out to be a delta function in the limit p →
∞ through even values. The distribution (20) is a good
approximation of (19) as long as the radiusR of the defect,
whereR = (1/p) arctanh[(1/2)1/p], is very small. Of course,
this happens for p even and very large. In order to make the
calculations analytical, below we will use (20) to represent
the charge density.

A color dielectric function G for this case with the
suitable behavior displayed in (14) can be given by

G(φ) =
[

φ2

φ2 + (Aα)l(φβ/p + 1)/2

]2α

, (21)

where l, α > 0, β < 0 andAα = 4α−1. Now, we substitute
(18) in the limit of large p, and we use (20) and (21) in (8)
to find

r2
{

1
1 + (Aα)l[(rp)−β+2p + (rp)2p]/2

}2α dU
dr

=
q

2
c(p)
p

(
1
rp

)2p

. (22)

In the case 2α = 1 we take the leading term in p to get

dU
dr

=
q

4
c(p)
p

(
1
r2

+ p−βr−β−2
)
. (23)

This is the color electric field in D = 3 dimensions. The
color electric potential obtained by integrating over the
radial coordinate r is

U(r) =
q

4
c(p)
p

[
− 1
r

+ fβ(r)
]
. (24)

The first term is the well-known Coulomb potential and the
second term comprises the confining part of the potential.
This part fβ(r) can be given in several distinct forms: for
β = −1 we obtain

fβ(r) = p ln r. (25)

On the other hand, forβ �= −1,we get the following formula:

fβ(r) = −p−β r−β−1

β + 1
. (26)

In this case we have, for β = −3/2, fβ(r) ∼ √
r, and

this reproduces the confining part of the Motyka–Zalewski
potential [2,3]; for β = −2, fβ(r) ∼ r, and now we get the
well-known linear confining part of the Cornell potential;
and for β = −3, fβ(r) ∼ r2. For β > −1 the potential does
not confine. As we can see, in the linear regime the tension
of the QCD string [5,23] is very strong and scales as ∼ p2.
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3 Electric, magnetic and dyonic defects

The electrically charged defects that we have found can be
used to give rise to other solutions. To do this, let us now
investigate the total energy of the global defect found in
D = 3 dimensions. It can be cast to the form [32]

Ee =
∫ ∞

1/p

dr r2
[

1
2

(
dφ
dr

)2

+
Q2

e

2 r4G
+ V

]
, (27)

where we integrate from 1/p, for p very large, to conform
with the approximation we have done for the charge den-
sity [see (20)], and with the size of the defect. In the above
expression, the second term is the color electric contribu-
tion, Qe is the color electric charge of the defect and G
is the color dielectric function. The scalar potential with
Wφ chosen as in (16), goes to zero as p (even) becomes
very large. In this limit our model approaches the model
studied recently in [40]. In the limit of large p the solution
(18) and G given as in (22) turn out to be

φ(r) �
(

1
r p

)p

, (28)

G(φ(r)) �
(

1
1 + (Aα)l r2p p2p

)2α

, (29)

where Aα = 4α − 1 and l are positive parameters of the
approximated color dielectric function. Now, we substitute
(28) and (29) into (27) to get the energy

Ee =
1
2

(Aα)l/2p pQ2
e Γ

(
−2α+ 1

2p

)
Γ

(
− 1

2p

)
2pΓ (−2α)

. (30)

Since the parameter p is assumed to be very large, the
formula above provides a simple expression for the energy
which is given by Ee = − 1

2 (Aα)l/2p pQ2
e. Notice that the

energy is very large because p is very large.
The above result can be extended to magnetic solu-

tions. Different to the lines followed by [40], here we do not
consider the Wu–Yang SU(2) magnetic monopole solution
of the non-Abelian sector of the theory; instead, we keep
dealing with the Abelian sector and we assume that the
global defect that we have found in D = 3 is charged by a
total magnetic charge Qm. We make use of the results for
the electric case to get the magnetic energy

Em =
1
2

(Aα)l/2p pQ2
m Γ

(
2α+ 1

2p

)
Γ

(
− 1

2p

)
2pΓ (2α)

. (31)

The magnetic energy is easily found by making the trans-
formation Qe → Qm and G → 1/G into (27) – see [32] for
details. As in the electric case, for large p, the magnetic
energy tends to be of the form Em = − 1

2 (Aα)l/2p pQ2
m.

Notice that we are changing the dielectric function to a
“magnetic permeability.” According to (29), we see that
this transformation is equivalent to the change α → −α.
We can refer to the two charged defects as “electric defect”
and “magnetic defect”, respectively.

The above electric and magnetic structures may be used
to ask for the presence of “dyonic” configurations. As one
knows, a dyon is an object with both electric and magnetic
charges. Thus, let us consider the possibility of a dyonic
structure with mass

MD = |Ee + Em| ≤ |Ee| + |Em| = Me +Mm. (32)

The stability of the dyonic object would be ensured by the
inequality MD < Me + Mm. In supersymmetric theories
the dyon is a BPS state whose mass is related to the cen-
tral charge of the supersymmetric algebra. The stability
of such a BPS state depends crucially on the value of its
parameters [13]. Thus, in our case we can think of a sim-
ilar way of getting stability of the dyon state with mass
MD. To do this, we see that for a suitable value of the pa-
rameter l the energy of the magnetic defect (31) becomes
imaginary. In this way, the sum Ee +Em produces a vector
in the complex plane and then MD is the length of this
vector, whose magnitude is less than the sum of its com-
ponents. Alternatively, for l/2p being a semi-integer, and
for α → −α, (Aα)l/2p → i(Ãα)l/2p (with Ãα = |4α + 1|),
we get Em → iẼm. In this case MD is given by the formula

MD =
√
E2

e + Ẽ2
m =

1
2
p
√
q2e + q2m, (33)

where the charges qe and qm are defined in terms of Ee

and Em in the limit of very large p as

qe = (Aα)l/2pQ2
e, (34)

qm = (Ãα)l/2pQ2
m. (35)

We notice that qe ↔ qm as long as α ↔ −α and G ↔ 1/G.

4 Comments and conclusions

We summarize this work recalling that we have studied
how the presence of new global defect structures could act
to confine in a simplified, Abelian model where the scalar
field self-interacts non-trivially, responding for changing
the dielectric properties of the medium. To make the model
more realistic, we have added fermions, which interact with
the scalar field through a Yukawa coupling, similar to the
couplings required in a supersymmetric environment.

We have investigated a model in D = 3 spatial dimen-
sions that seems to respond to confinement very appro-
priately. Similar investigations can perfectly be addressed
in any D spatial dimensions. In particular, in D = 1 we
could use the superpotential (16) for p = 3, 5, . . ., which
was shown to give rise to defect solutions of the form of 2-
kink solutions [15], with the kinks separated by a distance
which increases with increasing p = 3, 5, . . . This feature
has been further explored in [41], where one couples the
model to gravity in (4, 1) spacetime dimensions in warped
spacetime with one extra dimension. There one also finds
results which highlight the fact that the superpotential
(16) gives rise to 2-kink defect structures for p = 3, 5, . . .
These solutions could be used in the present context, to
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investigate confinement with these 2-kink defects. Investi-
gations of this appear interesting because it could offer an
alternative to [18], using a simpler model which requires a
single real scalar field to generate 2-kink structures.

InD = 3dimensions,we have shown that themonopole-
like, electrically charged global defect can be used to gen-
erate a magnetically charged global defect. This is imple-
mented by essentially changing the “color” dielectric func-
tion G(φ) to its inverse 1/G(φ). This feature has inspired
us to search for dyons, for dyonic-like structures which
should be stable bound states of electrically and magnet-
ically charged global defects, whose mass should be given
in terms of the electric and magnetic charges.
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4. M. Ślusarczyk, A. Wereszczyński, Eur. Phys. J. C 23, 145

(2002)
5. L. Wilets, Nontopological solitons (World Scientific, Sin-

gapore 1989)
6. A. Chodos, R.L. Jaffe, K. Jonhson, C.B. Thorn and

V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974)
7. W.A. Bardeen, M.S. Chanowitz, S.D. Drell, M. Weinstein,

T.-M. Yan, Phys. Rev. D 11, 1094 (1975)
8. R. Friedberg, T.D. Lee, Phys. Rev. D 15, 1964 (1977)
9. R. Dick, Phys. Lett. B 397, 193 (1997)

10. R. Dick, Phys. Lett. B 409, 321 (1997)
11. R. Dick, Eur. Phys. J. C 6, 701 (1999)
12. S. Mandelstam, Phys. Rep. C 23, 145 (1976); G. ’t Hooft,

in: Proceedings of the Eur. Phys. Soc. 1975, edited by
A. Zichichi

13. N. Seiberg, E. Witten, Nucl. Phys. B 426, 19 (1994)
14. V. Singh, D.A. Browne, R.W. Haymaker, Phys. Lett. B

306, 115 (1993)
15. D. Bazeia, J. Menezes, R. Menezes, Phys. Rev. Lett. 91,

241601 (2003)
16. E. Witten, Nucl. Phys. B 507, 658 (1997)
17. M.A.C. Kneipp, P. Brockill, Phys. Rev. D 64, 125012 (2001)
18. D. Bazeia, F.A. Brito, W. Freire, R.F. Ribeiro, Int. J. Mod.

Phys. A 18, 5627 (2003)
19. C. Montonen, D. Olive, Phys. Lett. B 72, 117 (1977)
20. R. Hobard, Proc. Phys. Soc. Lond. 82, 201 (1963)
21. G.H. Derrick, J. Math. Phys. 5, 1252 (1964)
22. R. Jackiw, Rev. Mod. Phys. 49, 681 (1977)
23. T.D. Lee, Particles physics and introduction to field theory

(Harwood Academic, New York 1981)
24. M. Rosina, A. Schuh, H.J. Pirner, Nucl. Phys. A 448, 557

(1986)
25. Ch. Schlichter, G.S. Bali, K. Schilling, Nucl. Phys. Proc.

Suppl. 63, 519 (1998)
26. G. ’t Hooft, Nucl. Phys. B 190, 455 (1981)
27. A.S. Kronfeld, M.L. Laursen, G. Schierholz, U.J. Wiese,

Phys. Lett. B 198, 516 (1987)
28. H. Shiba et al., Phys. Lett. B 333, 461 (1994)
29. G.S. Bali et al., Phys. Rev. D 54, 2863 (1996)
30. M. Chabab, R. Markazi, E.H. Saidi, Eur. Phys. J. C 13,

543 (2000)
31. M. Chabab, N. El Biaze, R. Markazi, E.H. Saidi, Class.

Quant. Grav. 18, 5085 (2001)
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